
Response to Programming
Models



The Good

• Diagnostics and other “stuff” on the
Stuff slide
– Right on!
– Concern: Need more details on the

actual API (how are you actually going
to do it?).

– Users need to be able to use it.
– Needs to be high enough priority to actually

be implemented.



Good and Bad

• Memory sync and programmer access:
– Bad: Long term we don’t want to think

about memory system implementation
details.

– Good: In the mean time (maybe forever?),
control over this level of detail is
necessary.

– Some contention on this.



Good and Bad (cont)

• History: Pragmas/options don’t always
work.

• Programming features don’t deliver
promise:
– Broken pragmas.
– Ignored compiler options/pragmas.



Objectionable proposals

• None.
• At least at the level of detail presented.



Things you should have said

• Memory controller support for memory
errors.
– Example: data watch points.

• Support for graceful evolution.
– Current investments are huge.
– No ephemeral features (codes live for

decades).


